The flexoelectric effect, which is a linear coupling between a strain gradient and electrical polarization, is a fundamental electromechanical property of all materials with potential for use in nanoscale devices, where strain gradients can be quite large. We report a study of the dependence of the flexoelectric response on thickness in ultrathin films of polar and non-polar polymers. The measurements of the flexoelectric response in non-polar polyethylene and the polar relaxor polymer polyvinylidene-co-trifluoroethylene-co-chlorofluoroethylene were made using a bent cantilever method and corrected for the contribution from the electrode oxide. The results show that the value of the flexoelectric coefficient increases with decreasing thickness, by up to a factor of 70 compared to the bulk value, reaching such enhanced values in films of only 10 nm thickness. These results are consistent with a model accounting for interfacial contributions, and underline how large electromechanical coupling can be produced at the nanoscale. The results also distinguish the surface flexoelectric response from that coming from the volume.