Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this study, the analysis of reinforced concrete (RC) beams strengthened with Fiber Reinforced Polymer (FRP) composites against bending and shear loads was carried out with the finite element technique, using ABAQUS software, which is widely used in simulating experimental circumstances in numerical studies. It has been reported that buildings in areas damaged by earthquakes are generally constructed using low-strength concrete and inadequate reinforcement. Additionally, construction errors also contribute to reducing the load-bearing capacity of structural elements. For this purpose, nine rectangular cross-section RC beams were experimentally constructed using low-strength concrete and inadequate bending and shear reinforcement. These beams were strengthened by wrapping them in different configurations with Carbon and Glass FRP (CFRP and GFRP) composites to resist shear and bending forces in both transverse and longitudinal directions, and their load-displacement curves were obtained. Subsequently, a three-dimensional Finite Element Model (FEM) was created to validate the experimental results. The FEM validation demonstrated high accuracy in replicating experimental outcomes, emphasizing the influence of mesh size, dilation angle, and concrete constitutive models on simulation fidelity. Parametric studies revealed that increasing longitudinal reinforcement diameters had minimal effect on load capacity but highlighted the critical role of transverse reinforcement, as reducing stirrup spacing significantly improved load-bearing capacity. GFRP-reinforced beams exhibited superior ductility and a 15% higher strength compared to CFRP, suggesting their suitability for applications demanding enhanced displacement capacity. Furthermore, the findings underline the need for refined FEM models to better capture inclined fiber orientations and optimize structural reinforcement strategies.
In this study, the analysis of reinforced concrete (RC) beams strengthened with Fiber Reinforced Polymer (FRP) composites against bending and shear loads was carried out with the finite element technique, using ABAQUS software, which is widely used in simulating experimental circumstances in numerical studies. It has been reported that buildings in areas damaged by earthquakes are generally constructed using low-strength concrete and inadequate reinforcement. Additionally, construction errors also contribute to reducing the load-bearing capacity of structural elements. For this purpose, nine rectangular cross-section RC beams were experimentally constructed using low-strength concrete and inadequate bending and shear reinforcement. These beams were strengthened by wrapping them in different configurations with Carbon and Glass FRP (CFRP and GFRP) composites to resist shear and bending forces in both transverse and longitudinal directions, and their load-displacement curves were obtained. Subsequently, a three-dimensional Finite Element Model (FEM) was created to validate the experimental results. The FEM validation demonstrated high accuracy in replicating experimental outcomes, emphasizing the influence of mesh size, dilation angle, and concrete constitutive models on simulation fidelity. Parametric studies revealed that increasing longitudinal reinforcement diameters had minimal effect on load capacity but highlighted the critical role of transverse reinforcement, as reducing stirrup spacing significantly improved load-bearing capacity. GFRP-reinforced beams exhibited superior ductility and a 15% higher strength compared to CFRP, suggesting their suitability for applications demanding enhanced displacement capacity. Furthermore, the findings underline the need for refined FEM models to better capture inclined fiber orientations and optimize structural reinforcement strategies.
The objective of this study was to systematically evaluate the effects of different repair methods to determine optimal strategies for enhancing the load-carrying capacity of damaged reinforced concrete beams. During construction or rehabilitation, some openings may be created in structural members for various reasons, either intentionally or accidentally. While creating these gaps, damage may occur to the lower reinforcement of the beam. Within the scope of this paper, the effects of these openings were studied, and the different techniques to be used in the repair of damaged reinforced concrete beams were investigated. This study discusses an experimental analysis of ten beams under bending loads. An opening gap was formed at the lower mid-span of all beams except the reference beam, with the main reinforcement in these openings being cut. The damaged beams were then repaired with various techniques, including fiber-reinforced polymer (FRP) sheets and different reinforcement bars. The experiments of all beams were carried out by applying the four-point bending test model. The results showed that all repaired beams had significant enhancements in behavior and load, stiffness, ductility, and energy consumption capacities compared to the damaged beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.