AHMAD, IFTEKHAR. Shear Response and Bending Fatigue Behavior of Concrete-Filled Fiber Reinforced Polymer Tubes. (Under the direction of Amir Mirmiran.) Recent field applications and research findings have demonstrated the effectiveness of concrete-filled fiber reinforced polymer (FRP) tubes (CFFT) as an efficient and promising hybrid system for designing main components such as pier columns, girders and piles for a bridge system. The vision was to provide a cost-competitive unified system composed of FRP/concrete hybrid members, which may act as a viable alternative to conventional reinforced and prestressed concrete structural systems. To achieve their broad-based implementation in civil infrastructure, understanding of their behavior and developing analytical tools under full spectrum of primary and secondary load demands are essential. Response characterizations under primary load demands namely, axial compression, flexural and axial-flexural, and seismic loadings have already been reported. However, investigations under primary shear and secondary fatigue load demands remain to be addressed. The present study consists of two phases. In the first phase, an experimental and analytical investigation was undertaken to characterize the behavior of a CFFT beam. Study on shear was primarily focused on the deep beam behavior. Comparisons of behavior of deep, short and slender beams were also highlighted. A strut-and-tie model approach, pertinent to analysis of deep reinforced and prestressed concrete members, was proposed to predict the shear strength of deep CFFT beams. Prediction showed good agreement with test results. It was concluded that shear failure mode is only critical for beams with shear span less than their depth.