This paper investigates the flexural behavior of CFRP plate-strengthened concrete structures. Specimens of the CFRP plate-reinforced beam were designed and tested by the four-point flexural test. The load-deflection relationship, failure modes, and crack propagation were analyzed. The results showed that the postcracking stiffness and bearing capacity of the test beams can be improved by the additional anchoring measures for CFRP strengthening. The relationship between flexural moment and curvature was analyzed by introducing a MATLAB program. The calculation model between curvature, flexural moment, and stiffness was derived for the CFRP plate-strengthened structure. The recommended calculation model was applied in the analysis of deflection, and the theoretical values were compared with the test results.