In this study, structurally efficient carbon fiber reinforced plastic (CFRP) sandwiches were developed via introducing pumice/Mg composite foams as new core material. The effects of the fiber direction (0°, 45°, 90°) on the mechanical properties of CFRP laminates and composite sandwiches were studied. Compared with 45°-CFRP and 90°-CFRP laminates, 0°-CFRP laminate exhibits outstanding flexural properties due to different failure modes. Correspondingly, the 0°-CFRP/PMSF composite sandwiches exhibit higher flexural strength than 45°-CFRP/PMSF and 90°-CFRP/PMSF composite sandwiches. The as-prepared composite sandwiches are lightweight and have higher specific strength than some traditional sandwiches. The different flexural behaviors of three types of sandwiches were observed to explain the failure mechanisms.