Abstract:To reuse waste concrete in a more straightforward and simplified way, a new kind of structural member containing fresh concrete (FC) and demolished concrete lumps (DCLs) distinctly larger than conventional recycled aggregates has been proposed. Previous research has shown that, at room temperature, the mechanical performance of the U-shaped steel beams filled with DCLs and FC is similar to that of the U-shaped steel beams filled with FC alone. This research explores the fire behavior of the U-shaped steel beams filled with DCLs and FC. Five specimens including three beams filled with DCLs and FC and two reference beams filled with FC alone were tested in fire. The experimental parameters included the replacement ratio of DCLs, the longitudinal reinforcement ratio, the load ratio, and the thickness of fire insulation. Based on the test results, numerical models in which the thermal resistance at the interface between the U-shaped steel and the in-filled concrete is considered are developed using SAFIR to determine the thermal and structural responses of the specimens. Lastly, parametric studies are carried out preliminarily to investigate the effects of some parameters on the fire resistance of such beams. It is found that the replacement ratio of DCLs within a range of 0% to 33% has a very limited effect on the temperature distribution, structural response, and fire resistance of the specimens, that embedding longitudinal reinforcements can significantly increase the fire resistance of such beams, that the interface thermal resistance can generate a temperature drop of up to 280 • C at the interface between the U-shaped steel and the in-filled concrete, and that the numerical models are capable of predicting the thermal and structural responses of such beams.