Thrust vectoring technique enables aircraft to perform various maneuvers not available to conventional-engined planes. This paper presents an application of switching control concepts to fault-tolerant control design for an F-16 aircraft model augmented with thrust vectoring. Two controllers are synthesized using a switching logic, and they are switched on a fault parameter. During normal flight conditions, the F-16 aircraft relies on no vectored thrust and the elevator. The thrust vectoring nozzle is only turned on in the presence of elevator failures. Two elevator fault scenarios, lock and loss of effectiveness, are considered. Nonlinear simulation results show that the switching control can guarantee the stability and performance of the faulted system.