In order to separate the colloidal in high-turbidity water, a kind of magnetic composite (Fe3O4/HBPN) was prepared via the functional assembly of Fe3O4 and an amino-terminal hyperbranched polymer (HBPN). The physical and chemical characteristics of Fe3O4@HBPN were investigated by different means. The Fourier Transform infrared spectroscopy (FTIR) spectra showed that the characteristic absorption peaks positioned at 1110 cm−1, 1468 cm−1, 1570 cm−1 and 1641 cm−1 were ascribed to C–N, H–N–C, N–H and C=O bonds, respectively. The shape and size of Fe3O4/HBPN showed a different and uneven distribution; the particles clumped together and were coated with an oil-like film. Energy-dispersive spectroscopy (EDS) displayed that the main elements of Fe3O4/HBPN were C, N, O, and Fe. The superparamagnetic properties and good magnetic response were revealed by vibrating sample magnetometer (VSM) analysis. The characteristic diffraction peaks of Fe3O4/HBPN were observed at 2θ = 30.01 (220), 35.70 (311), 43.01 (400), 56.82 (511), and 62.32 (440), which indicated that the intrinsic phase of magnetite remained. The zeta potential measurement indicated that the surface charge of Fe3O4/HBPN was positive in the pH range 4–10. The mass loss of Fe3O4/HBPN in thermogravimetric analysis (TGA) proved thermal decomposition. The –C–NH2 or –C–NH perssad of HBPN were linked and loaded with Fe3O4 particles by the N–O bonds. When the Fe3O4/HBPN dosage was 2.5 mg/L, pH = 4–5, the kaolin concentration of 1.0 g/L and the magnetic field of 3800 G were the preferred reaction conditions. In addition, a removal efficiency of at least 86% was reached for the actual water treatment. Fe3O4/HBPN was recycled after the first application and reused five times. The recycling efficiency and removal efficiency both showed no significant difference five times (p > 0.05), and the values were between 84.8% and 86.9%.