Background
Seasonal floods pose a commonly-recognised barrier to women’s access to maternal services, resulting in increased morbidity and mortality. Despite their importance, previous GIS models of healthcare access have not adequately accounted for floods. This study developed new methodologies for incorporating flood depths, velocities, and extents produced with a flood model into network- and raster-based health access models. The methodologies were applied to the Barotse Floodplain to assess flood impact on women’s walking access to maternal services and vehicular emergency referrals for a monthly basis between October 2017 and October 2018.
Methods
Information on health facilities were acquired from the Ministry of Health. Population density data on women of reproductive age were obtained from the High Resolution Settlement Layer. Roads were a fusion of OpenStreetMap and data manually delineated from satellite imagery. Monthly information on floodwater depth and velocity were obtained from a flood model for 13-months. Referral driving times between delivery sites and EmOC were calculated with network analysis. Walking times to the nearest maternal services were calculated using a cost-distance algorithm.
Results
The changing distribution of floodwaters impacted the ability of women to reach maternal services. At the peak of the dry season (October 2017), 55%, 19%, and 24% of women had walking access within 2-hrs to their nearest delivery site, EmOC location, and maternity waiting shelter (MWS) respectively. By the flood peak, this dropped to 29%, 14%, and 16%. Complete inaccessibility became stark with 65%, 76%, and 74% unable to access any delivery site, EmOC, and MWS respectively. The percentage of women that could be referred by vehicle to EmOC from a delivery site within an hour also declined from 65% in October 2017 to 23% in March 2018.
Conclusions
Flooding greatly impacted health access, with impacts varying monthly as the floodwave progressed. Additional validation and application to other regions is still needed, however our first results suggest the use of a hydrodynamic model permits a more detailed representation of floodwater impact and there is great potential for generating predictive models which will be necessary to consider climate change impacts on future health access.