“…As resilience depends on the two key factors of reliability and recovery, 14 resilience parameters for housing infrastructure against flood hazards were selected based on the experts' knowledge and a literature review. The selected resilience parameters were as follows: (i) Type_of_house (robust types of houses are expected to perform better during floods) [31,65]; (ii) Wall_thickness (increasing wall thickness increases the resistance capability and reliability) [31,66]; (iii) Building_age (newly constructed buildings were found to be in better condition than older building) [31,67]; (iv) Number_of_stories (as stories increase, casualties decrease during floods) [31,67]; (v) Drainage (adequate drainage systems prevent damage to infrastructure) [31,68]; (vi) Flood_depth (this produces water pressure, which reduces the reliability of the infrastructure) [31,68]; (vii) Foundation_type [65,69]; (viii) Plinth_level (increasing the plinth height of the house to the top level of the road reduces vulnerability) [31]; (ix) Insurance (insurance enhances the recovery rate as the insurer can pay off the insurance claims) [31,70]; (x) Income (for households with higher income levels, the recovery process will be faster after a disaster) [31,69,71]; (xi) Education (education enhances the preparedness against disaster) [67,69,72]; (xii) Relief_received (whether during/after the disaster relief is received or not) [31,73,74]; (xiii) Approachability (whether connectivity from resource location to vulnerable site is disturbed or not) [31,69]; (xiv) Resource_availability (whether during/after the disaster raw materials for construction are available locally or not) [31].…”