Flooding events tend to destroy the original flood-intolerant vegetation in riparian zones, but the flood-tolerant species can confront the stress, and contribute to the riparian ecosystem. Grass species, Hemarthria altissima, are usually dominant in the riparian zones. This species is considered as good forage which is usually grazed by livestock or mowed by local people. Therefore, the apical tissues of the plants are often removed, and the plants have to grow without stem apexes, during their life cycle. In this study, we aimed to examine the differences in growth performance of intact versus apex-cut individuals of H. altissima upon complete submergence. Two groups of H. altissima plants (with and without shoot apexes) were treated with dark non-submergence and dark complete submergence conditions for 200 days. During the experiment, we measured plant growth, biomass changes in plant organs, and the consumption of non-structural carbohydrates by different tissues. During submergence, shoot elongation stopped, and around six lateral buds were developed averagely by each plant without apexes. This growth performance finally caused 60% decline of non-structural carbohydrates (NSC) in underground parts. The relatively intensive consumption of carbohydrates in submerged apex-removed plants induced the 21% stem length decreased under water, which indicated the decreasing submergence tolerance of plants with shoot apex removed. Therefore, we suggest that when using H. altissima for restoring degraded riparian ecosystems, the shoot apexes should be protected from grazing by livestock or harvesting by local people in order to maintain the submergence tolerance of H. altissima.