This paper presents a new data fusion multiscale observation product (MOP) for flood emergencies. The MOP was created by integrating multiple sources of contributed open-source data with traditional spaceborne remote sensing imagery in order to provide a sequence of high spatial and temporal resolution flood inundation maps. The study focuses on the 2015 Memorial Day floods that caused up to USD 61 million dollars of damage. The Hydraulic Engineering Center River Analysis System (HEC-RAS) model was used to simulate water surfaces for the northern part of the Trinity River in Dallas, using reservoir surcharge releases and topographic data provided by the U.S. Army Corps of Engineers. A measure of fit assessment is performed on the MOP flood maps with the HEC-RAS simulated flood inundation output to quantify spatial differences. Estimating possible flood inundation using individual datasets that vary spatially and temporally allow to gain an understanding of how much each observational dataset contributes to the overall water estimation. Results show that water surfaces estimated by MOP are comparable with the simulated output for the duration of the flood event. Additionally, contributed data, such as Civil Air Patrol, although they may be geographically sparse, become an important data source when fused with other observation data.