This work addresses the response of a holographic conformal field theory to a homogeneous gravitational periodic driving. The dual geometry is the AdS-soliton, which models a strongly coupled quantum system in a gapped phase, on a compact domain. The response is a time-periodic geometry up to a driving amplitude threshold which decreases with the driving frequency. Beyond that, collapse to a black hole occurs, signaling decoherence and thermalization in the dual theory. At some frequencies, we also find a resonant coupling to the gravitational normal modes of the AdS-soliton, yielding a nonlinearly bound state. We also speculate on the possible uses of quantum strongly coupled systems to build resonant gravitational wave detectors.