Flowering plants often exhibit declining resource investment to floral organs, fruits and seeds temporally or spatially in an inflorescence. To account for such variances, non‐uniform pollination hypothesis, which highlights various mating environments each flower experiences, provides adaptive significance for allocation patterns but with controversial supports. Sagittaria trifolia (Alismataceae) was used to examine differences in seed number, seed weight and germination rate among sequential fruits within inflorescences. Ovule number was also investigated to evaluate allocation patterns in the floral stage. To test the non‐uniform pollination hypothesis, we used three polymorphic microsatellite loci of S. trifolia to estimate the seed outcrossing rate in proximal and distal fruits. The results showed that the seed number, average seed weight and seed germination rate of S. trifolia gradually decreased from proximal to distal fruits within inflorescences. The percent of decrease in seed number between two contiguous fruits was 14.68 ± 3.22%, which was much stronger than the percent of decrease in ovule number at 6.95 ± 1.60%. Both proximal and distal fruits within inflorescences had high outcrossing rates (81.5 ± 5.0%, proximal; 82.3 ± 6.9%, distal) and they did not differ significantly. Overall, there was an acropetal decline of resource allocation to fruits within inflorescences of S. trifolia. Allocation pattern to ovules was not a limiting factor for seed production. The lack of difference in outcrossing rate between proximal and distal fruits indicated that the allocation strategy was probably not caused by non‐uniform pollination, but more likely position effects.