Parallel micro or mini-channels are widely used in various devices of process and energy engineering including microreactors, compact heat exchangers and fuel cells. Nevertheless, the flow maldistribution due to the improper design of distributor/collector is usually observed, leading to globally poor performances of these devices. The objective of this study is to optimize the shape of the distributor/collector pipes so as to achieve a uniform flow distribution among an array of parallel minichannels. A Z-type ladder fluid network with 10 mini-channels in parallel having square section is introduced and investigated. Two methods are used to optimize the shape of distributor/collector pipes: a discrete stairway shape optimized according to the scaling relations proposed by Tondeur et al. (2011) and a continuous tapered shape with the inclined angle varying from 0° to 30°. 3D-CFD simulations are carried out using the ANSYS FLUENT code. Numerical results obtained show that a relatively uniform flow distribution may be reached by the discrete stairway shape or by the linear tapered shape under very low flow-rate conditions. Larger inclined angle or fewer channels in parallel are favorable for more uniform flow distribution under higher flow-rate conditions. Nevertheless this implies that the distributor and the collector pipes occupy a large volume so that the entire device is less compact.