Power generating gas turbines employ an inlet duct or contraction to accelerate air to the operating inlet velocity of the compressor. Multiple passages of this kind are necessary in gas turbines with cycle modifications such as intercooling. An experimental investigation was carried out to obtain flow characteristics of a curved wall annular contraction. The results are described in terms of the velocity vectors, surface pressure coefficients, static and stagnation pressure distributions, and profiles of mean velocities, turbulence intensity, and Reynolds shear stress. The upstream flow conditions were changed to evaluate how they affected the flow development in the passage. Results show that the static pressure and axial velocity profiles at the contraction exit were uniform. Higher inlet turbulence increased the Reynolds shear stress although the effect on the static and total pressure fields was negligible. The overall stagnation pressure loss was approximately 2 to 3 percent of the dynamic head at the contraction exit.