To improve the intelligence level of particleboard inspection lines, machine vision and artificial intelligence technologies are combined to replace manual inspection with automatic detection. Aiming at the problem of missed detection and false detection on small defects due to the large surface width, complex texture and different surface defect shapes of particleboard, this paper introduces image super-resolution technology and proposes a super-resolution reconstruction model for particleboard images. Based on the Transformer network, this model incorporates an improved SRResNet (Super-Resolution Residual Network) backbone network in the deep feature extraction module to extract deep texture information. The shallow features extracted by conv 3 × 3 are then fused with features extracted by the Transformer, considering both local texture features and global feature information. This enhances image quality and makes defect details clearer. Through comparison with the traditional bicubic B-spline interpolation method, ESRGAN (Enhanced Super-Resolution Generative Adversarial Network), and SwinIR (Image Restoration Using Swin Transformer), the effectiveness of the particleboard super-resolution reconstruction model is verified using objective evaluation metrics including PSNR, SSIM, and LPIPS, demonstrating its ability to produce higher-quality images with more details and better visual characteristics. Finally, using the YOLOv8 model to compare defect detection rates between super-resolution images and low-resolution images, the mAP can reach 96.5%, which is 25.6% higher than the low-resolution image recognition rate.