Platelet activation at sites of vascular injury is crucial for hemostasis, but it may also cause myocardial infarction or stroke. Cytoskeletal reorganization is essential for platelet activation and secretion. The small GTPase Cdc42 has been implicated as an important mediator of filopodia formation and exocytosis in various cell types, but its exact function in platelets is not established. Here, we show that the megakaryocyte/platelet-specific loss of Cdc42 leads to mild thrombocytopenia and a small increase in platelet size in mice. Unexpectedly, Cdc42-deficient platelets were able to form normally shaped filopodia and spread fully on fibrinogen upon activation, whereas filopodia formation upon selective induction of GPIb signaling was reduced compared with wild-type platelets. Furthermore, Cdc42-deficient platelets showed enhanced secretion of ␣ granules, a higher adenosine diphosphate (ADP)/adenosine triphosphate (ATP) content, increased aggregation at low agonist concentrations, and enhanced aggregate formation on collagen under flow. In vivo, lack of Cdc42 resulted in faster occlusion of ferric chloride-injured arterioles. The life span of Cdc42-deficient platelets was markedly reduced, suggesting increased clearing of the cells under physiologic conditions. These data point to novel multiple functions of Cdc42 in the regulation of platelet activation, granule organization, degranulation, and a specific role in GPIb signaling. (Blood. 2010;115(16): 3364-3373)
IntroductionAt sites of tissue trauma, platelets become activated and rapidly aggregate to form a plug that seals the wound and limits blood loss. On the other hand, platelet activation in pathologic situations can lead to thrombosis, causing myocardial infarction or stroke. Platelet activation by multiple signaling pathways leads to shape change, release of intracellularly stored granules, and spreading on immobilized ligands. Small GTPases of the Rho family, namely RhoA, Cdc42, and Rac1, are thought to play important roles in the cytoskeletal rearrangements occurring during platelet activation by facilitating the formation of stress fibers, filopodia and lamellipodia, respectively. 1 In platelets, signaling from G protein-coupled receptors, such as the thromboxane or thrombin receptors, as well as immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors (GPVI, CLEC-2) was shown to induce activation of Rho GTPases. 2,3 Cdc42 is a small (ϳ 23 kDa) protein that cycles between a GDP-bound inactive and a GTP-bound active state. 4 Cdc42 is an important mediator of filopodia formation in various cell types. According to the "convergent elongation model," active Cdc42 induces activation of Wiskott-Aldrich Syndrome protein (WASP). WASP subsequently activates the ARP2/3 complex, thereby increasing actin turnover and initiating the formation of parallel actin bundles. [5][6][7] Furthermore, Cdc42 can also bind to and activate IRSp53, which recruits the Ena/vasodilator-stimulated phosphoprotein (VASP) family protein Mena, thus promoting filopodi...