2012
DOI: 10.1016/j.jhydrol.2012.05.065
|View full text |Cite
|
Sign up to set email alerts
|

Flow discharge prediction in compound channels using linear genetic programming

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
14
0
1

Year Published

2014
2014
2017
2017

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 52 publications
(15 citation statements)
references
References 23 publications
0
14
0
1
Order By: Relevance
“…Di Malaysia, kajian mengenai peramalan aliran sungai semakin berkembang. Kaedah pengaturcaraan persamaan genetik (Azamathulla & Zahiri 2012), Mesin Sokongan Vektor (Shabri & Suhartono 2012) dan kaedah pelicinan eksponen (Musa & Wan Mohamed 2007) merupakan antara kaedah yang digunakan untuk peramalan aliran sungai. Namun, peramalan proses hidrologi menggunakan teori kalut belum pernah diaplikasikan.…”
Section: Pengenalanunclassified
“…Di Malaysia, kajian mengenai peramalan aliran sungai semakin berkembang. Kaedah pengaturcaraan persamaan genetik (Azamathulla & Zahiri 2012), Mesin Sokongan Vektor (Shabri & Suhartono 2012) dan kaedah pelicinan eksponen (Musa & Wan Mohamed 2007) merupakan antara kaedah yang digunakan untuk peramalan aliran sungai. Namun, peramalan proses hidrologi menggunakan teori kalut belum pernah diaplikasikan.…”
Section: Pengenalanunclassified
“…Azamathulla and Zahiri [24] used linear genetic programming to predict the ow discharge in a compound open channel. Zaji and Bonakdari [25] utilized the ANN and Radial Basis Neural Network (RBNN) to compute the discharge capacity of a triangular side weir.…”
Section: Introductionmentioning
confidence: 99%
“…Recently researchers used the number of the AI models for prediction flow discharge in the rivers. In this regard using the Artificial Neural Network, M 5 tree model, Gene Expression Method, SVM (Parsaie et al 2015c), and Group Method of Data Handling can be mentioned based on the reports the accuracy of the AI models is much more than the empirical approaches (Zahiri and Azamathulla 2014;Wang et al 2014;Al-Khatib et al 2013;Kozio艂 2013;Yonesi et al 2013;Azamathulla and Zahiri 2012;Khatua et al 2012;Sahu et al 2011;Unal et al 2010;Knight et al 1984;. In this paper using the radial basis function neural network due to simple its structure for prediction of flow in compound open channel is considered.…”
Section: Introductionmentioning
confidence: 99%