In the paper, a one-dimensional compressible flow of gas inside the gas turbine’s diffuser has been simulated. The modeling has been performed to the aim of obtaining boundary conditions of outlet gas from diffuser and inlet gas to the combustion chamber. Depending on working flow regimes of fluid including subsonic, transonic, and supersonic flows, changes of diffuser cross-section have different effects on gas flow characteristics. For these effects to be correctly imposed, Mach number of the gas flow in each time-step affected by changes of cross-section would be determined, depending on the local Mach number in the same time-step. Obtaining distribution of Mach number along diffuser length, changes in other main characteristics of flow such as pressure, temperature, speed, and density for all of the points along diffuser length would be obtained. In order to verify the validity of the numerical algorithm used, the gas flow would be solved in a divergent nozzle and compared to other numerical methods. In the end, using gas turbine diffuser’s geometrical information, compressible gas flow inside it would be studied using the actual boundary conditions for a 25 MW gas turbine.