Freehand 3D ultrasound can be acquired without a position sensor by deducing the elevational probe motion from the inter-frame speckle decorrelation. However, a freehand scan involves lateral and axial, as well as elevational, probe motion. The lateral sampling is determined by the A-line separation and is relatively sparse: lateral motion tracking therefore requires sub-sample interpolation. In this paper, we investigate the resilience of lateral interpolation techniques to simultaneous lateral and elevational probe motion. We propose a novel interpolation strategy and, through a series of in vitro experiments, compare its performance with that of established alternatives. The new technique is shown to be superior, limiting interpolation errors to around 5% of the length of the freehand reconstruction.