Almost all angiosperms are angiospermous, i.e. the ovules are enclosed in carpels at anthesis and during seed development, but angiospermy develops in different ways across angiosperms. The most common means of carpel closure is by a longitudinal ventral slit in carpels that are partly or completely free. In such carpels, the closure process commonly begins at midlength of the prospective longitudinal slit and then proceeds downward and upward. Closure by a transverse slit is rarer, but it is prominent in groups of the ANITA grade and in a few early branching monocots (some Alismatales) and some early branching eudicots (a few Ranunculaceae and Nelumbonaceae), in these eudicots combined with a more or less developed longitudinal slit. In all these cases the carpels have a single ovule in ventral median position. In ANITA lines with pluriovulate carpels, there is only a short longitudinal slit in the uniformly ascidiate carpels. In carpels with a unifacial style the closure area is narrow; this pattern is rare and scattered mainly in some wind-pollinated monocots and eudicots. In most angiosperms the carpels become closed before the ovules are visible from the outside of the still incompletely closed carpels (early carpel closure). This is notably the case in the ANITA grade and magnoliids. Delayed carpel closure, with the ovules visible before the carpels are closed, is much rarer and is concentrated in a few monocots (mainly some Alismatales and some Poales) and a few eudicots (mainly a few Ranunculales and many Caryophyllales, and scattered in some other eudicots). A kind of delayed carpel closure (with the placenta visible before closure but mostly not the ovules) also occurs in syncarpous gynoecia with a free central placenta. Most gynoecia with a free central placenta occur in the superasterids. In such gynoecia the individual carpel tips are not differentiated but the opening in young gynoecia has the shape of a circular diaphragm. In this case, when ovary septa and free carpel tips are missing, the number of carpels is sometimes unclear (Primulaceae, Lentibulariaceae, some Santalaceae). Extremely ascidiate carpels are concentrated in the ANITA grade, a few magnoliids and some early branching monocots. Aspects of potential advantages of plicate vs. ascidiate carpels with regard to flexibility of pollen tube transmitting tract differentiation are discussed.