Abstract:Estimating the 3D motion of points in a scene, known as scene flow, is a core problem in computer vision. Traditional learning-based methods designed to learn end-toend 3D flow often suffer from poor generalization. Here we present a recurrent architecture that learns a single step of an unrolled iterative alignment procedure for refining scene flow predictions. Inspired by classical algorithms, we demonstrate iterative convergence toward the solution using strong regularization. The proposed method can handle… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.