2022
DOI: 10.1371/journal.pone.0273649
|View full text |Cite
|
Sign up to set email alerts
|

FluentSigners-50: A signer independent benchmark dataset for sign language processing

Abstract: This paper presents a new large-scale signer independent dataset for Kazakh-Russian Sign Language (KRSL) for the purposes of Sign Language Processing. We envision it to serve as a new benchmark dataset for performance evaluations of Continuous Sign Language Recognition (CSLR) and Translation (CSLT) tasks. The proposed FluentSigners-50 dataset consists of 173 sentences performed by 50 KRSL signers resulting in 43,250 video samples. Dataset contributors recorded videos in real-life settings on a wide variety of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2023
2023

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 33 publications
0
1
0
1
Order By: Relevance
“…Современные работы по распознаванию жестового языка сталкиваются с такими проблемами, как, например, определение границ элемента языка, а именно -является ли движение продолжением одного жеста или уже началом следующего [123]. Эта же проблема является препятствием для автоматической разметки наборов данных, как в [124].…”
Section: рис 3 основные методы автоматического распознавания устной р...unclassified
“…Современные работы по распознаванию жестового языка сталкиваются с такими проблемами, как, например, определение границ элемента языка, а именно -является ли движение продолжением одного жеста или уже началом следующего [123]. Эта же проблема является препятствием для автоматической разметки наборов данных, как в [124].…”
Section: рис 3 основные методы автоматического распознавания устной р...unclassified
“…Many approaches to model aspects of sign language have been described in the literature. Hand-shape classification methods attempt to recognise specific configurations of hands [4,16,[45][46][47][48], which can be considered the fundamental sign articulator-this has particular importance for recognising finger spelling [49]. Others focus on modelling nonmanual aspects, which are essential context carriers, not least for discriminating between signs with similar appearance.…”
Section: Modellingmentioning
confidence: 99%