The metering of industrial manufacturing liquids is constantly being updated. Using an automated system, metered dispense can now be more accurate to its theoretical value. This system can help reduce the difference between the theoretical and metered volumes in manufacturing applications. This paper describes an automated liquid dispensing machine that uses an AT Mega 328 microcontroller to control the metered volume to the program set-point. The machine's design and implementation include hardware systems assembled from various modules with various functions, such as a microcomputer, power supply, liquid level detection, liquid discharge, conveyor and container detection, and LCD modules. The data collected by the liquid level detection module is analyzed when the system is started to determine the liquid level in the tank. A user loads empty containers onto the conveyor, which are then transferred to the discharge point. The machine calculates the equivalent time in seconds to open the discharge solenoid valve via its control relay and dispense the desired volume based on the user set-point. The experiment performed on the machine with water as the test liquid revealed that the automated dispensing machine's maximum time permissible is 35 s, which corresponds to an equivalent volume of approximately 700 ml of water. Experiments were conducted to compare the theoretical time required to obtain a specified volume to the time required for the machine to dispense the same volume. The results showed that the machine's accuracy is approximately 97.87 %. Therefore, the machine can be used in beverage manufacturing companies, pharmaceutical industries, and laboratories to dispense and fill specified fluids that meet the machine's specifications.