This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO
2
) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection.
This article is part of the themed issue ‘Energy and the subsurface’.