A hybrid magneto-hydrodynamic antenna consisting of one copper annular ring loaded with dielectric resonator has been biased with DC voltage and magnetic fields. RF input and DC bias voltage has been applied in x direction and magnetic field B has been given in y direction. Propylene polymer pipes (PPR) cylindrical tube filled with mixture of barium strontium titanate (BSTO) and silicone oil is placed on the concentric copper annular ring. Mathematical coupled solution of Maxwell's and Navier Stroke's equations have been worked for this geometry. A new antenna parameter, i.e., velocity field (v) has been found to be contributing to the Poynting vector solution to this class of antennas. Velocity field (v) has become integral part along with E and H fields for computing Poynting vector. Hence, PPR geometry, fluid volume, copper annular ring radius, fluid permittivity, electric filed (E), magnetic field (H) and velocity (v) becomes the function of antenna resonant frequency and radiation patterns. A prototype antenna has been designed. Simulations based on HFSS have been presented. Both type results were compared. More than 4.5 GHz ultra large bandwidth and 17 dB gain has been reported in the results.Biographical notes: Rajveer S. Yaduvanshi completed his PhD degree from Delhi University and MTech degree from M NIT Allahabad in 1999. He has more than 22 years of teaching and research experience. He has successfully implemented fighter aircraft arresting barrier projects at selected flying stations of the Indian Air Force. He has worked on indigenisation defence projects