Adsorbent lifetime during protein A chromatography is not readily predicted or understood, representing a key challenge to be addressed for biopharmaceutical manufacturers. This article focuses on the impact of feed composition on the performance of a typical agarose-based protein A resin across a lifetime of 50 cycles. Cycling studies were performed using three different feed materials with varying levels of feed components including proteases, histones, DNA, and nonhistone proteins. Changes in the process and quality attributes were measured. The DBCs were not seen to vary between conditions although there was a reduction in particle porosity in all cases. Fluorescence spectroscopy and LC-MS/MS were used to identify the contribution and extent of fouling to the observed capacity loss. Residual protein A ligand density and deposition of foulants (HCP, residual mAb, and DNA) varied between the three feed materials. Resins cycled in feed materials containing high concentrations of HCP and histones were seen to have greater extents of capacity loss. The mode of performance loss, capacity loss, or impact on product quality was seen to vary depending on the feed material. The results indicate that feed material composition may be correlated to the rate and mode of resin aging as a basis for improved process understanding. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:412-419, 2018.