Water-dispersible and (bio)functionalizable nanoclays have a considerable potential as inexpensive carriers for organic molecules like drugs and fluorophores. Aiming at simple design strategies for red-emissive optical probes for the life sciences from commercial precursors with minimum synthetic effort, we systematically studied the dye loading behavior and stability of differently functionalized laponites. Here, we present a comprehensive study of the absorption and emission properties of the red emissive hydrophobic and neutral dye Nile Red, a well-known polarity probe, which is almost insoluble and nonemissive in water. Adsorption of this probe onto disk-shaped nanoclays was studied in aqueous dispersion as function of dye concentration, in the absence and presence of the cationic surfactant cetyltrimethylammonium bromide (CTAB) assisting dye loading, and as a function of pH. This laponite loading strategy yields strongly fluorescent nanoclay suspensions with a fluorescence quantum yield of 0.34 at low dye loading concentration. The dye concentration-, CTAB-, and pH-dependent absorption, fluorescence emission, and fluorescence excitation spectra of the Nile-Red-nanoclay suspensions suggest the formation of several Nile Red species including emissive Nile Red monomers facing a polar environment, nonemissive H-type dimers, and protonated Nile Red molecules that are also nonfluorescent. Formation of all nonemissive Nile Red species could be suppressed by modification of the laponite with CTAB. This underlines the great potential of properly modified and functionalized laponite nanodisks as platform for optical probes with drug delivery capacities, for example, for tumor and therapy imaging. Moreover, comparison of the Nile Red dimer absorption spectra with absorption spectra of previously studied Nile Red aggregates in dendrimer systems and micelles and other literature systems reveals a considerable dependence of the dimer absorption band on microenvironment polarity which has not yet been reported so far for H-type dye aggregates.