High-order harmonic generation (HHG) from aligned acetylene molecules interacting with mid infra-red (IR), linearly polarized laser pulses is studied theoretically using a mixed quantum-classical approach in which the electrons are described using time-dependent density functional theory while the ions are treated classically. We find that for molecules aligned perpendicular to the laser polarization axis, HHG arises from the highestoccupied molecular orbital (HOMO) while for molecules aligned along the laser polarization axis, HHG is dominated by the HOMO-1. In the parallel orientation we observe a double plateau with an inner plateau that is produced by ionization from and recombination back to an autoionizing state. Two pieces of evidence support this idea. Firstly, by choosing a suitably tuned vacuum ultraviolet pump pulse that directly excites the autoionizing state we observe a dramatic enhancement of all harmonics in the inner plateau. Secondly, in certain circumstances, the position of the inner plateau cut-off does not agree with the classical three-step model. We show that this discrepancy can be understood in terms of a minimum in the dipole recombination matrix element from the continuum to the autoionizing state. As far as we are aware, this represents the first observation of harmonic enhancement over a wide range of frequencies arising from autoionizing states in molecules.