Abstract:Increasing the ability to investigate plant functions and structure through non-invasive methods with high accuracy has become a major target in plant breeding and precision agriculture. Emerging approaches in plant phenotyping play a key role in unraveling quantitative traits responsible for growth, production, quality, and resistance to various stresses. Beyond fully automatic phenotyping systems, several promising technologies can help accurately characterize a wide range of plant traits at affordable costs and with high-throughput. In this review, we revisit the principles of proximal and remote sensing, describing the application of non-invasive devices for precision phenotyping applied to the protected horticulture. Potentiality and constraints of big data management and integration with "omics" disciplines will also be discussed.