Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red lightabsorbing form, Pr, and the far-red-light-absorbing form, Pfr. Here we performed in vitro and in vivo studies using locked phycocyanobilin derivatives, termed 15 Z anti phycocyanobilin (15ZaPCB) and 15 E anti PCB (15EaPCB). Recombinant bacterial and plant phytochromes incorporated either chromophore in a noncovalent or covalent manner. All adducts were photoinactive. The absorption spectra of the 15ZaPCB and 15EaPCB adducts were comparable with those of the Pr and Pfr form, respectively. Feeding of 15EaPCB, but not 15ZaPCB, to protonemal filaments of the moss Ceratodon purpureus resulted in increased chlorophyll accumulation, modulation of gravitropism, and induction of side branches in darkness. The effect of locked chromophores on phytochrome responses, such as induction of seed germination, inhibition of hypocotyl elongation, induction of cotyledon opening, randomization of gravitropism, and gene regulation, were investigated in wildtype Arabidopsis thaliana and the phytochrome-chromophore-deficient long hypocotyl mutant hy1. All phytochrome responses were induced in darkness by 15EaPCB, not only in the mutant but also in the wild type. These studies show that the 15Ea stereochemistry of the chromophore results in the formation of active Pfr-like phytochrome in the cell. Locked chromophores might be used to investigate phytochrome responses in many other organisms without the need to isolate mutants. The induction of phytochrome responses in the hy1 mutant by 15EaPCB were however less efficient than by red light irradiation given to biliverdin-rescued seeds or seedlings.