Abstract-The plasmonic effects of a gold prolate nanospheroid on the spontaneous emission of an adjacent emitter, regarded as an oscillating electric dipole, at the excitation and emission stages are studied respectively by using the multiple multipole method. The numerical results show that when an irradiating light is at the longitudinal surface plasmon resonance frequency of the nanospheroid and with a polarization parallel to the long axis, the strongest excitation rate occurs at the proximity of the long-axis vertex. In addition, if the emitter is at this region, and its orientation is also parallel to the long axis, the apparent quantum yield of the emission is the maximum, compared to the other locations and orientations. Therefore, for this case the overall enhancement factor of a nanospheroid on an emitter's spontaneous emission is the maximum. In contrast, the emitter's emission could be quenched, if it is near the short-axis vertex.