Pressure‐sensitive adhesives (PSAs) are widely used in daily life, but their poor degradability poses significant challenges to sustainable development. To address this, we synthesized a polycarbonate, PPCB, using carbon dioxide and propylene oxide as raw materials, incorporating rigid benzene rings and ester functional groups. PPCB exhibited a Td,−5%, and Td,max that were 58.5% and 30.7% higher than those of polypropylene carbonate (PPC), respectively. Its highest tensile strength was 55% higher than PPC, while its elongation at break decreased from 421% to 165%. The 180° peel strength of PPCB reached 5.2 ± 0.56 N/cm, surpassing that of some commercial products such as Duct‐tape. PPCB demonstrated high and stable adhesion strength (~52 N) on various substrates. Its adhesion strength to skin tissue was 26.6 ± 1.6 kPa, significantly higher than that of commercially available fibrin glue. Rheological studies indicated that PPCB maintained high viscosity throughout the testing process, with a lap shear strength close to 4.56 MPa. Additionally, PPCB showed excellent degradability, with a high water absorption rate and significant weight loss. PPCB also exhibited good biocompatibility, with a cell viability rate greater than 90%. PPCB has the potential to become a novel degradable PSA, providing a new solution for environmental sustainability.