Nanoparticles are of great interest for water treatment as they remove a significant portion of water contaminants. In analogy to these emerging practices, the present work investigated the feasibility of using silica nanoparticles (SiO2-NPs) to remove azoxystrobin from an aqueous solution. We investigated the effects of experimental parameters, such as solution temperature, adsorbent dosage, contact time, and initial azoxystrobin concentration, on the removal efficiency of azoxystrobin. Structural and chemical analysis of the synthesized nanoparticles was performing using X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), and surface studies. The percentage of azoxystrobin removal efficiency was 92.8 at an initial azoxystrobin concentration of 10 mg/L. The result showed that by increasing the adsorbent dosage from 0.005 to 0.1 mg, the percentage removal efficiency of azoxystrobin from aqueous solution increased significantly from 59.72% to 95.21%. At the same time, the adsorption amount of azoxystrobin in equilibrium decreased with increasing temperature. It was found that the optimum temperature for removing azoxystrobin was 20 °C. Although the study was conducted under well-controlled laboratory conditions, the silica nanoparticle system showed excellent performance in removing a significant amount of azoxystrobin, making it a potential alternative/cooperator in water treatment for removing pesticides from aqueous solutions.