The lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transitions of aqueous dispersions of a number of synthetic phosphatidylethanolamines containing linear saturated, branched chain, and alicyclic fatty acyl chains of varying length were studied by differential scanning calorimetry, 31P nuclear magnetic resonance spectroscopy, and X-ray diffraction. For any given homologous series of phosphatidylethanolamines containing a single chemical class of fatty acids, the lamellar gel/liquid-crystalline phase transition temperature increases and the lamellar liquid-crystalline/reversed hexagonal phase transition temperature decreases with increases in hydrocarbon chain length. For a series of phosphatidylethanolamines of the same hydrocarbon chain length but with different chemical structures, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary markedly and in the same direction. In particular, at comparable effective hydrocarbon chain lengths, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary in parallel, such that the temperature difference between these two phase transitions is nearly constant. Moreover, at comparable effective acyl chain lengths, the d spacings of the lamellar liquid-crystalline phases and of the inverted hexagonal phases are all similar, implying that the thickness of the phosphatidylethanolamine bilayers at the onset of the lamellar liquid-crystalline/reversed hexagonal phase transition and the diameter of the water-filled cylinders formed at the completion of this phase transition are comparable and independent of the chemical structure of the acyl chain.(ABSTRACT TRUNCATED AT 250 WORDS)