Fluorine/bromine/selenium multi-heteroatoms substituted dual-asymmetric electron acceptors for o-xylene processed organic solar cells with 19.12% efficiency
Yibo Zhou,
Guangyu Qi,
Han Liu
et al.
Abstract:The development of high-performance near-infrared (NIR) absorbing electron acceptors is a major challenge in achieving high short-circuit current density (JSC) to increase power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, three new multi-heteroatomized Y-series acceptors (bi-asy-Y-Br, bi-asy-Y-FBr, and bi-asy-Y-FBrF) were developed by combining dual-asymmetric selenium-fused core and brominated end-groups with different numbers of fluorine substitutions. With gradually increasing fluorin… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.