Human activities are causing global change around the world including habitat destruction, invasive species in non-native ecosystems, overexploitation, pollution, and global climate change. While traditional monitoring has long been used to quantify and aid mitigation of global change, in-situ autonomous sensors are being increasingly used for environmental monitoring. Sensors and sensor platforms that can be deployed in developed and remote areas and allow high-frequency data collection, which is critical for parameters that exhibit important short-term dynamics on the scale of days, hours, or minutes. In this article, we discuss the benefits of in-situ autonomous sensors in aquatic ecosystems as well as the many challenges that we have experienced over many years of working with these technologies. These challenges include decisions on sensor locations, sensor types, analytical specification, sensor calibration, sensor drift, the role of environmental conditions, sensor fouling, service intervals, cost of ownership, and data QA/QC. These challenges result in important tradeoffs when making decisions regarding which sensors to deploy, particularly when a network of sensors is desired to cover a large area. We also review recent advances in designing and building chemical-sensor platforms that are allowing researchers to develop the next-generation of autonomous sensors and the power of integrating multiple sensors into a network that provides increased insight into the dynamics of water quality over space and time. In the coming years, there will be an exponential growth in data related to aquatic sensing, which will be an essential part of global efforts to monitor and mitigate global change and its adverse impacts on society.