Arsenic exposure results in damage to the neurological system. We previously demonstrated the arsenic‐induced inhibition of hippocampal neurogenesis and its reversibility after exposure is terminated. The present study aimed to reveal whether arsenic‐induced inhibition of hippocampal neurogenesis was ameliorated when taurine was co‐administered, and we also investigated depression‐like behavioral changes using the forced swim test. Mice were randomly divided into four groups. The first group received distilled water only for 4 months (control group), the second group received 4.0 mg/L As2O3 via drinking water for 4 months (arsenic group), the third group received 4.0 mg/L As2O3 and taurine (150 mg/kg body weight, by gavage, twice a week) for 4 months (arsenic + taurine group), and the fourth group received taurine only by gavage for 4 months (taurine group). The percentage of new mature neurons decreased in the arsenic group compared with the control group (64% ± 0.90% vs. 76% ± 1.9%, p < 0.01); however, this percentage was reversed to control levels in the arsenic + taurine group (76% ± 1.4%, p > 0.05). In the forced swim test, the immobility time during the last 4 min was significantly increased in the arsenic group, but restored to control levels in the arsenic + taurine group. The possible mechanisms of this taurine amelioration of hippocampal damage were further investigated, and included a reduction in oxidative stress as indicated by carbonyl content, inflammation, and aquaporin1, 4, and 8 expressions, as well as an increase in Wnt3a and brain‐derived neurotrophic factor expression in western blot analyses.