We map substructure in three strong-lensing systems having particularly good image data: the galaxy lens MG J0414+053 and the clusters SDSS J1004+411 and ACO 1689. Our method is to first reconstruct the lens as a pixelated mass map and then subtract off the symmetric part (in the galaxy case) or a projected Navarro-Frenk-White profile (for the cluster lenses). In all three systems we find extended irregular structures, or meso-structures, having of order 10% of the total mass. In J0414+053, the meso-structure suggests a tidal tail connecting the main lens with a nearby galaxy; however, this interpretation is tentative. In the clusters, the identification of meso-structure is more secure, especially in ACO 1689, where two independent sets of lensed images imply very similar meso-structure. In all three cases, the meso-structures are correlated with galaxies but much more extended and massive than the stellar components of single galaxies. Such extended structures cannot plausibly persist in such high-density regions without being mixed; the crossing times are too short. The meso-structures therefore appear to be merging or otherwise dynamically evolving systems.