Spontaneous Ca2+ release from intracellular stores is important for various physiological and pathological processes. In cardiac muscle cells, spontaneous store overload-induced Ca2+ release (SOICR) can result in Ca2+ waves, a major cause of ventricular tachyarrhythmias (VTs) and sudden death. The molecular mechanism underlying SOICR has been a mystery for decades. Here, we show that a point mutation E4872A in the helix bundle crossing (the proposed gate) of the cardiac ryanodine receptor (RyR2) completely abolishes luminal, but not cytosolic, RyR2 Ca2+ activation. Introducing metal-binding histidines at this site converts RyR2 into a luminal Ni2+ gated channel. Mouse hearts harboring an RyR2 mutation at this site (E4872Q+/−) are resistant to store overload-induced Ca2+ waves and completely protected against Ca2+-triggered VTs. These data show that the RyR2 gate directly senses store Ca2+, explaining RyR2 store Ca2+ regulation, Ca2+ wave initiation, and Ca2+-triggered arrhythmias. This novel store-sensing gate structure is conserved in all RyRs and inositol 1,4,5-trisphosphate receptors.