Illite particles were exfoliated by the intercalation and subsequent deintercalation of dimethyl sulfoxide (DMSO) in the interlayer of illite, and the exfoliated illite particles were used to prepare a novel poly(ethylene oxide) (PEO)–illite nanocomposite. The resulting exfoliated illite and PEO–illite nanocomposites were characterized by X‐ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry, ion conductivity testing, thermogravimetry analysis, and mechanical testing. The XRD results showed that the acid treatment of illite to exchange K+ in the interlayer of illite with H+ was a necessary condition for the DMSO intercalation. SEM micrographs confirmed the exfoliation of the illite particles in the process of DMSO deintercalation from the interlayer of the illite–DMSO intercalation complex. A good dispersion of exfoliated illite in the PEO matrix was also confirmed. A gradual decrease in the PEO crystallinity in the PEO–illite nanocomposites was observed with increasing exfoliated illite concentration. The ion conductivity of the nanocomposites gradually increased with the filler content and reached 3.21 × 10−5 S/cm at an illite concentration of 20 wt %. The formation of an amorphous region around the exfoliated illite was beneficial for Li+‐ion conduction. The ion conductivity significantly increased when the amorphous regions were connected to each other to form a conducting path for Li+ ions with a high filler concentration of greater than 10 wt %. Meanwhile, the thermooxidative stability and mechanical properties of the PEO–illite nanocomposites were also enhanced when exfoliated illite was introduced into the polymer matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44226.