Replication-defective retroviral vectors have been used for more than 25 years as a tool for efficient and stable insertion of therapeutic transgenes in human cells. Patients suffering from severe genetic diseases have been successfully treated by transplantation of autologous hematopoietic stem-progenitor cells (HSPCs) transduced with retroviral vectors, and the first of this class of therapies, Strimvelis, has recently received market authorization in Europe. Some clinical trials, however, resulted in severe adverse events caused by vector-induced proto-oncogene activation, which showed that retroviral vectors may retain a genotoxic potential associated to proviral integration in the human genome. The adverse events sparked a renewed interest in the biology of retroviruses, which led in a few years to a remarkable understanding of the molecular mechanisms underlying retroviral integration site selection within mammalian genomes. This review summarizes the current knowledge on retrovirus-host interactions at the genomic level, and the peculiar mechanisms by which different retroviruses, and their related gene transfer vectors, integrate in, and interact with, the human genome. This knowledge provides the basis for the development of safer and more efficacious retroviral vectors for human gene therapy.