Publication InformationRonan, William, Deshpande, Vikram S., McMeeking, Robert M., & McGarry, J. Patrick. (2014). Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion. Biomechanics found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the interdependent biomechanical processes regulating stress fibre and focal adhesion formation.