Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22-40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency.functional connectivity | brain networks | dynamics | graph theory | classification T he brain is highly active in a continuous manner, and much of neural activity is not directly locked to external events or stimuli. This continuous brain activity is spatiotemporally organized into a functional connectivity architecture that comprises several large-scale networks. Large-scale networks span different cerebral lobes and include subcortical structures (1). The regions comprised in such networks commonly coactivate together in response to task demands (2), but they also show correlated and spontaneous activity fluctuations when no changes occur in the external environment. The functional connectivity architecture ensuing from these activity cofluctuations largely persists across all mental states, including various tasks, resting wakefulness, and sleep, albeit showing some degree of modulation across these states (3, 4).Strength and spatial distributions of functional connectivity within this architecture are not, however, stationary across time. At the spatial level of large-scale networks, functional connectivity shows prominent changes over the range of seconds to minutes (5). These so-called in...