The nonlinear interaction of intense femtosecond laser pulses with a self-induced plasma channel in air and the energy transfer between two intersecting laser pulses were simulated using the finite-difference time-domain particle-in-cell method. Implementation of a simple numerical code enabled modeling of various phenomena, including pulse self-modulation in the spatiotemporal and spectral domains, conical emission, and energy transfer between two intersecting laser beams. The mechanism for energy transfer was found to be related to a plasma waveguide array induced by Moiré patterns of the interfering electric fields. The simulation results provide a persuasive replication and explanation of previous experimental results, when carried out under comparable physical conditions, and lead to prediction of others. This approach allows us to further examine the effect of the laser and plasma parameters on the simulation results and to investigate the underlying physics.