Biogenesis of β-barrel membrane proteins is a complex, multi-step, and as yet incompletely characterized process. The bacterial porin family is perhaps the best studied protein family among the β-barrel membrane proteins that allows diffusion of small solutes across the bacterial outer membrane. In this study, we have identified residues that contribute significantly to the protein-protein interaction (PPI) interface between the chains of Outer Membrane Protein F (OmpF), a trimeric porin, using an empirical energy function in conjunction with an evolutionary analysis. By replacing these residues through site-directed mutagenesis, either with energetically favorable residues or substitutions that do not occur in natural bacterial outer membrane proteins, we succeeded in engineering OmpF mutants with dimeric and monomeric instead of trimeric oligomerization state. Moreover, our results suggest that the oligomerization of OmpF proceeds through a series of interactions involving two distinct regions of the extensive PPI interface: Two monomers interact to form a dimer through the PPI interface near G19. This dimer than interacts with another monomer through the PPI interface near G135 to form a trimer. We have found that perturbing the PPI interface near G19 results in the formation of the monomeric OmpF only. Thermal de-naturation of the designed dimeric OmpF mutant suggests that the oligomer dissociation can be separated from the process of protein unfolding. Furthermore, the conserved site near G57, G59 is important for the PPI interface and might provide the essential scaffold for protein-protein interactions.