Opisthopappus longilobus (Opisthopappus) and its descendant species, Opisthopappus taihangensis, commonly thrive on the Taihang Mountains of China. Being typical cliff plants, both O. longilobus and O. taihangensis release unique aromatics. To determine the potential differentiation and environmental response patterns, comparative metabolic analysis was performed on O. longilobus wild flower (CLW), O. longilobus transplant flower (CLT), and O. taihangensis wild flower (TH) groups. Significant differences in the metabolic profiles were found, not within O. longilobus, but between O. longilobus and O. taihangensis flowers. Within these metabolites, twenty-eight substances related to the scents were obtained (one alkene, two aldehydes, three esters, eight phenols, three acids, three ketones, three alcohols, and five flavonoids), of which eugenol and chlorogenic were the primary aromatic molecules and enriched in the phenylpropane pathway. Network analysis showed that close relationships occurred among identified aromatic substances. The variation coefficient (CV) of aromatic metabolites in O. longilobus was lower than O. taihangensis. The aromatic related compounds were significantly correlated with the lowest temperatures in October and in December of the sampled sites. The results indicated that phenylpropane, particularly eugenol and chlorogenic, played important roles in the responses of O. longilobus species to environmental changes.