“…Consider the 1-form ω = x + A 2 (x, y) + xA2 3 (x, y) + xφ(x, y) dy + tx 2 + B 3 (x, y) − yφ(x, y) dx, withA 2 (x, y) = αx 2 + wxy + ry 2 A 2 3 (x, y) = tw(4rt − 3s) s x 2 + βxy + rαy (x, y) = tw(3s − 2rt) s x 2 y + sxy 2 φ(x, y) = t(2rt − s) 2 (rt − s) x 3 + 2t(rt − s)w 2 s x 2 y + (rt − s)(s + 2rt)w s xy 2 + r(rt − s)y 3 , (rt − s) (s 4 − rs 3 t − r 2 s 2 t 2 + s 2 tw 3 − 2rst 2 w 3 + r 2 t 3 w 3 ),where r, s, t ∈ C * , w ∈ C, rt = s. The 1-form ω define a foliation on P 2 with a unique singularity which is a saddle-node. If we set w = 0 the 1-form ω adopt the form x + ry 2 + βx 2 y + xφ(x, y) dy + tx 2 + sxy 2 − yφ(x, y) dx, whereφ(x, y) = t(2rt − s) 2 (rt − s) x 3 + r(rt − s)y 3 , β = 1 rt − s (s 2 − rst − r 2 t 2 )and r, s, t ∈ C * , rt = s. This family is equivalent to that given by Alcántara and Pantaleón-Mondragón in[2]. Also note that if w = 0, r = t = 1 and s = b we recover Example 5.…”