The convention for the safeguarding of Intangible Cultural Heritage (ICH) by UNESCO highlights the equal importance of intangible elements of cultural heritage to tangible ones. One of the most important domains of ICH is folkloric dances. A dance choreography is a time-varying 3D process (4D modelling), which includes dynamic co-interactions among different actors, emotional and style attributes, and supplementary elements, such as music tempo and costumes. Presently, research focuses on the use of depth acquisition sensors, to handle kinesiology issues. The extraction of skeleton data, in real time, contains a significant amount of information (data and metadata), allowing for various choreography-based analytics. In this paper, a trajectory interpretation method for Greek folkloric dances is presented. We focus on matching trajectories’ patterns, existing in a choreographic database, to new ones originating from different sensor types such as VICON and Kinect II. Then, a Dynamic Time Warping (DTW) algorithm is proposed to find out similarities/dissimilarities among the choreographic trajectories. The goal is to evaluate the performance of the low-cost Kinect II sensor for dance choreography compared to the accurate but of high-cost VICON-based choreographies. Experimental results on real-life dances are carried out to show the effectiveness of the proposed DTW methodology and the ability of Kinect II to localize dances in 3D space.